Teilchen im 1-D Kasten

From bio-physics-wiki

(Difference between revisions)
Jump to: navigation, search
Line 73: Line 73:
 
und nicht wie vielleicht erwartet null!<br\><br\>
 
und nicht wie vielleicht erwartet null!<br\><br\>
  
Die Lösung der Zeitabhängingen Schrödinger Gleichung ist durch die Superposition der Teillösungen gegeben.
+
Die [[Schrödinger Equation in Position Space|Lösung der Zeitabhängingen Schrödinger Gleichung]] ist durch die Superposition der Teillösungen gegeben.
  
 
<div style="background:#FEF5CA;border:1px solid #797979;border-radius:10px;padding:5px 15px 5px 15px;">
 
<div style="background:#FEF5CA;border:1px solid #797979;border-radius:10px;padding:5px 15px 5px 15px;">

Revision as of 21:50, 2 August 2013

Wir betrachten ein Teilchen in einem unendlich hohen Potential $V(x)$ welches das Teilchen in einem eindimensionalen Kasten einsperrt. $V(x)$ ist überall unendlich "hoch" und nur zwischen $0$ und $L$ null. Das Teilchen muss am unendlich hohen Potential total reflektiert werden und deshalb ist $\phi (x)$ außerhalb des Intervalls $[0,L]$ null.

\begin{align} V(x)=\begin{cases} 0 &\mbox{für } 0 \leq x \leq L \\ \infty & \mbox{sonst } \end{cases} \end{align} Obwohl sich das Teilchen streng genommen in einem Potential befindet, behandeln wir das Teilchen als frei. Wir machen das, weil wir wissen, das sich das Teilchen innerhalb des Kastens befinden muss. Alle Einschränkungen der Teilchenbewegung kommen daher von den Randbedingungen. Die Zeitunabhängige Schrödinger Gleichung für ein freies Teilchen in einer Dimension lautet

\begin{align} \frac{-\hbar^2 }{2m} \frac{\partial^2}{\partial x^2} \phi(x) = E \phi(x) \\ \end{align}

Schreiben wir die Gleichung mit $k=\frac{\sqrt{E 2m}}{h}$ um \begin{align} \frac{\partial^2}{\partial x^2} \phi(x) = -k^2 \phi(x) \\ \end{align}

erkennen wir, dass dies der harmonische Oszillator mit der Lösung

\begin{align} \phi = Ae^{ikx} + A'e^{-ikx} \end{align} ist. Mit der Randbedingung $\phi(0)=\phi(L)=0$ erhalten wir \begin{align} \phi(0) = A + A'=0 \end{align} $A'=-A$ und damit \begin{align} \phi(x)=A(e^{ikx}-e^{-ikx})=2iA sin(kx)=C \cdot sin(kx) \end{align}

Mit der zweiten Randbedingung erhalten wir \begin{align} \phi(L)=C \cdot sin(k_n L)=0 \Rightarrow k_n=\frac{n\pi}{L} \end{align}


Die Lösung der Wellengleichung für den unendlich tiefen Potentialtopf lautet.

\begin{align} \phi_n(x)=C \cdot sin(\frac{n\pi}{L}x) \end{align} wir müssen diese nur noch normieren \begin{align} \int_0^L dx \, |C|^2 sin^2(k_n x)=|C|^2 \frac{L}{2} \Rightarrow C=\sqrt{\frac{2}{L}} \end{align} Die normierte Lösung der Schrödinger Gleichung ist daher unendlich tiefen Potentialtopf is daher

\begin{align} \phi_n(x)=\sqrt{\frac{2}{L}} \cdot sin(\frac{n\pi}{L}x) \end{align}

Der Energiewert der $n-$ten Eigenschwingung ist

\begin{align} E_n=\frac{p_n^2}{2m}=\frac{\hbar^2}{2m}k_n^2=\frac{\hbar^2}{2m}\frac{n^2\pi^2}{L^2} \end{align}


\begin{align} E_n=\frac{\hbar^2}{2m}\frac{n^2\pi^2}{L^2} \end{align}


mit der Nullpunktsenergie

\begin{align} E_1=\frac{\hbar^2}{2m}\frac{\pi^2}{L^2} \end{align}


und nicht wie vielleicht erwartet null!

Die Lösung der Zeitabhängingen Schrödinger Gleichung ist durch die Superposition der Teillösungen gegeben.

\begin{align} \psi(x,t)= \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{L}} \cdot sin(\frac{n\pi}{L}x) \cdot e^{i \frac{\hbar}{2m}\frac{n^2\pi^2}{L^2} t} \end{align}



Literatur:

  • D. Griffiths - Introduction to Quantum Mechanics